A big part of innovation in space technology revolves around finding smart, efficient and circular ways to establish a life support system for the astronauts going on the trip. Since it’s simply impossible to bring an end-less amount of resources on board, how do you make sure the astronauts can eat, drink and breath?

Viewing cities as spaceships
The European Space Agency (ESA) established MELiSSA (Micro-Ecological Life Support System Alternative); an initiative with the aim to conduct research on and to develop technology for circular life support systems for long-term human space missions. It was established to gain knowledge on regenerative systems in space stations, aiming for the highest degree of autonomy possible; consequently to produce food, water and oxygen from astronaut waste.

What if we view “cities as spaceships”; in terms of urban environments being ‘closed-loop systems’? This gives way to the idea that the same space technology developed by ESA could be applied to increase circularity in a city like Amsterdam.

The Space for Food project explores the potential and scalability of applying space technology for applications in urban contexts.

“The objective of MELiSSA is, on one side, to take all the waste of the mission, and on the other side to produce, oxygen, [energy], water and food. So this is the ultimate example of circular economy.”

Cristophe Lasseur | Head of MELiSSA Project | ESA (ESTEC)

Towards circular resource streams
Municipal wastewater is a great resource for nutrients and water reuse. The Space for Food project aims to use space technology in recovering nutrients and cleaning wastewater that can be used in food production using vertical farming. Closing the loops from waste to resource will help improving the impact in the environment, while creating resilience for the cities.

For this reason, the project will test a proof of concept using a raceway reactor for purple bacteria cultivation brewery and municipal yellow wastewater (urine). The biomass will be used as slow release fertilizer and bio-stimulant for cultivation of vegetables.

The aforementioned slow release fertilizer and bio-stimulant for cultivation of vegetables will be tested at a local vertical farm set-up by GROWx – reinforcing this closed loop system.

GROWx 2.0 Robotic vertical farm

Long-term goals and feasibility
The project goal is to have a series of technologies validated for nutrient recovery, water treatment and food production that can serve as circular solution for the cities. The integration of the technology can reach to a high degree of self-sufficiency and resilience for organizations or governments. The products will shorten the supply chain and create resilience in the area with a significant positive impact of the environment and a boost to the local economy.

Previous feasibility study of the technologies proposed was done in 2019 showing a potential for water recovery up to 80% (suitable to be used in irrigation) and nutrient recovery for an output of roughly 2 kg of product (candidate vegetables) per person per day, on the municipal waste stream.

Experimenting at Marineterrein Amsterdam Living Lab
The systems will be tested at Marineterrein Amsterdam Living Lab (MALL). This area is being developed into an inner-city test ground where different parties work closely together to develop urban experimentation at Marineterrein Amsterdam.

More information on the stakeholders involved and when this test will take place will follow soon.

  • June 2020 - December 2020